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The initial stage of the laminar-turbulent transition in a boundary layer is characterized 
by the development of unstable modes [i, 2]. If the level of external disturbances is low, 
the extent of this stage is commensurate with the space scale of nonparallelism effects in the 
average flow. The downstream buildup of the boundary layertends to distort the characteristics 
of the individual modes, on the one hand, and to induce mode switching, on the other. 

The only unstable mode at subsonic and moderate supersonic flow velocities is the first 
mode (the Tollmien-Schlichting wave), whose parameters differ significantly from the param- 
eters of other normal modes. Mode switching is weak in this case, and the development of 
the Tollmien-Schlichting wave can be treated separately. Numerous calculations of the evolu- 
tion of unstable disturbances in a boundary layer have been carried out in this setting [i, 2]. 
They provide the basis of the eN-method for computing the Reynolds numbers at which laminar- 
turbulent transition begins [3]. 

At sufficiently high Mach numbers (the specific values of which may be found in [4]) 
qualitative changes take place in the spectrum of normal modes, where the second, third, and 
higher modes acquire an acoustic instability. Acoustic instability is attributable to mode 
locking in the discrete spectrum [5, 6]. In the vicinity of mode locking the dispersion 
curves ~(~) (~ is the wave number, and ~ is the frequency of the disturbance) split, one 
mode acquiring a positive increment of its growth rate, and the other acquiring a negative 
increment. If the split is sufficiently wide, a zone of instability is formed with the branch 
points of the spectrum situated near its boundaries [5-7]. The eigenvalues of two modes merge 
in the vicinity of the branch points, so that strong mode switching is possible here as a 
result of nonparallelism of the average flow. Similar anomalies occur in a thin shock layer 
[6, 8, 9] .  

In the present article we analyze mode switching near the branch points of the spectrum 
in the example of a supersonic boundary layer. The results are quite general and can be 
applied to other classes of unstable, slightly nonparallel flows. 

I. We consider two-dimensional flow in a laminar boundary layer having a characteristic 
thickness 6. We assume that the parameters of the main flow change downstream by an order of 
magnitude within the scale L >> 6. We reduce the longitudinal (xl), lateral (y), and trans- 
verse (z) coordinates to dimensionless form relative to 6, and likewise the time t relative 
to 6/Ue (Ue is a characteristic velocity at the outer boundary of the boundary layer). We 
represent a disturbance with a fixed frequency ~ ~ 0 and a fixed z-component of the wave 
vector ~ by the expression Q~F(xl, y)exp(i~z --iwt). 

We introduce the "slow" variable x = sx I (the small parameter s = 6/L characterizes the 
nonparallelism of the main flow). The amplitude F obeys the linearized Navier--Stokes equations, 
which can be written in the operator form 

It(g, 0~, x, ~Ox, 6, ~)F : 0 ;  [ F [ - ~ 0 ,  y - +  oo; ( 1 . 1 )  

N(ay, x, ~, ~)v(x, 0) = 0, ( 1 . 2 )  

where  Eq. ( 1 . 2 )  g i v e s  u n i f o r m  b o u n d a r y  c o n d i t i o n s  on t h e  s u r f a c e  o f  t h e  body y = 0; t h e  m a t r i ~  
c e s  H and N depend  on t h e  p a r a m e t e r s  o f  t h e  main f l o w ,  and t h e i r  e x p l i c i t  f o rm may be found  
in [i, i0]. 

We are interested in the particular solution of the problem (I.i), (1.2) in the form of 
a superposition of discrete spectrum modes propagating downstream from a certain source of 
excitation: 
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i ( 1 . 3 )  F = E ( F R 0 q - s r k ~ @ . . . ) e x p ( i e - ~ S h ) ,  S h =  ak(x) dx. 
x 8 

We assume that the mode amplitudes are give in the initial cross section x S. In the 
principal approximation with respect to s we obtain a locally uniform problem containing x as a 
parameter : 

(1.4) 
I t (y ,  ay, x, ia, ~, (o)Fo = 0, NFo(x, 0) = 0, IFol-+ 0, u-+ ~ .  

We drop the subscript k from now on. The solution F 0 is conveniently written in the form of 
the product of the eigenfunction of the problem (1.4) A(x, y, ~) and a certain predetermined 
normalization to a function C(x). The equation for ~he next-higher approximation F I is solv- 
able if its right-hand side is orthogonal to the eigenfunction B of the conjugate problem, 
i.e., if 

Fo = C(x)A(x, U, ~), 

/ B  oH A~  dC < ag aA i da a2H A~ C = O, 
\ \  " o---~ / 7 7  + B, ~ - f 2  q 2 dx ~2 / 

C (xs) = Cs, <f, g> = 
0 

(the asterisk denotes complex conjugate). The system 
a mode of the boundary layer without mode switching. 
a(x) can be determined by replacing F0 with A in Eq. (1.4), differentiating the system of 
equations with respect to x, and writing the solvability condition for the resulting problem 
[i0] in the form 

(1.5) 

* d EhgJ y 

(1.4), ( 1 . 5 )  describes the evolution of 
The local behavior of the eigenvalue 

<B, Og . ~ d ~  <B, ag (1.6)  ~ - - A / - ~ x  @ ~ z - z A > =  0. 

The e x p a n s i o n  ( 1 . 3 )  i s  a p p l i c a b l e  in  domains  where  none  o f  t h e  e i g e n v a l u e s  i s  e q u a l  t o  
z e r o  and e a c h  one i s  d i s t i n c t  f rom a l l  o t h e r s  [ 1 1 ] .  Fo r  d i s t u r b a n c e s  w i t h  a n o n z a r o  f r e -  
quency  t h e  f i r s t  c o n d i t i o n  i s  e q u i v a l e n t  t o  t h e  n o n e x i s t e n c e  o f  modes h a v i n g  an i n f i n i t e  
p h a s e  v e l o c i t y  and i s  v a l i d  f o r  r e a l  p h y s i c a l  p r o b l e m s ;  t h e  s e c o n d  c o n d i t i o n  i m p l i e s  t h a t  t h e  
s p e c t r u m  does  n o t  c o n t a i n  any  b r a n c h  p o i n t s .  We now d e t e r m i n e  t h e  c a s e s  in  which  t h i s  con -  
d i t i o n  fails. Let the eigenvalue a 0 and the eigenfunction A0 = A(x0, Y, a0) exist at the point 
x0, which is complex in general. In a small neighborhood of x 0 we write the eigenfunction 
in the series form 

A = Ao (y )  --F n A d y )  n L •  n L . . . .  • = o~ - -  o% ( 1 . 7 )  

Assuming that the operator H is analytic in the neighborhood of the point (x 0, s0), we 
expand it into a series, substitute Eq. (1.7) into (1.4), and form the scalar product with the 
solution of the conjugate problem B 0 = B(x0, y, s0).- As a result, we obtain an equation relat- 
ing a and x: 
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all~ A \ < all~ 
(Bo,  O//~ •  z o / X +  Bo, -aTAl+  

t a21Io \ 
+T---~-2 A o ? •  . . . .  0, X = x - - x  o. 

The point x 0 is a lowest-order branch point if 

a2//~ \ IBo,  aHo \ Otto t --~- A o / =  0, Bo, --~- at  + ~- -~-~2 Ao? ~-~ O; 

(1.8) 

( 1 . 9 )  

~z = a o __+_ z 1 / x  + . . . .  x~ = - Bo' -77,  Ao Bo' ~ & + T ac, - - T  ( 1 . 1 o )  

This is the most typical situation, because higher-order branching requires the applica- 
tion of additional orthogonality conditions. We now verify that the expansion (1.7) is 
sensible. To do so, we substitute it into Eq. (1.4) and set the sums of coefficients of like 
powers of X equal to zero, taking Eq, (i.i0) into account: 

OH~ A 
HoA o = 0 ,  HoAI+-TU o = 0 ,  

(1.11) 
OH o 2 aHo , i a2Ho Ao + -b-7 A1 0. HoA~ + ~- ~ Ao ~ "~ a---- T = 

By virtue of Eqs. 
are orthogonal to be conjugate function B0, so that the solutions AD Av.. exist. 

To determine the asymptotic behavior of C(X) in the limit X § 0, we substitute Eq. (1.7) 
and the analogous expansion for the conjugate problem into Eqs. (1.5) and (1.6), taking Eq. 
(i.i0) into account, whereupon we obtain 

C(X) : CoX-1/4+ .... X -+O.  (1.12) 

(1.9) and (1.10) the right-hand sides of the second and third equations 

The principal term of the expansion has a universal form, i.e., only the constant C O and 
subsequent regular terms of the asymptotic expansion change under a change of normalization of 
the eigenfunction A �9 The singular behavior of the function C(X) in the vicinity of a branch 
point is determined entirely by the behavior of the spectrum a(x). Taking Eqs. (i.i0) and 
(1.12) into account, we write the principal term of the expansion (1.3) in the limit X § 0 
in the form 

F ~ [a exp (qD) + b exp (--~)]X-I/4Ao exp [ie-~(So + aoX)], 
= (2/3)~e-lLX3/~. 

(1.13) 

If X = 0(s2/3), the eikonal representation of (1.3) is invalid. In the interior domain 

with the variable $ = g-2/sX we have 

F = s -1/~ exp (is-lSo + ie-1/3ao~)[]o(~)Ao + el/3]~(~)A1 -[- 82/~/~(~)A2 + ... ] + ...; (1.14) 

aH o 
//oAo = 0, /~HoAI--(/~-Td-Ao = 0; (1.15)  

OH o , all o ~ ,, a~ 
fiHoA2 + ~/0 ~ A0 -- i/l ~ AI -- ~/0 7~ A~ = 0 (1.16) 

(the prime signifies differentiation with respect to ~). Making use of Eq. (I.ii), from the 
second Eq. (1.15) we obtain fl = --if~. It follows from the solvability condition (1.16) and 
the relation (i. I0) that 
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tr 

/o + ~ f o  = 0. ( i .  i 7) 

The asymptotic behavior of the solutions of the Airy equation (1.17) depends on the orienta- 
tion of the Stokes lines ~j, j = i, 2, 3, which are determined from the condition ReS('~) ='0, 
5(~) = (2/3)i~g3/2 

Let the Stokes lines run through the complex plane of ~ as shown in Fig. i. Following 
Fedoryuk [12], we introduce matched canonical domains Dj:s Dj, s ~ 3Dj. We choose a branch 

of the function k(~) in each domain in such a way that Imk > 0, g ~ ~j e Dj. Then Re~ > 0(<0) to 

the right (to the left) of gj, and the solution (1.17) has the asymptotic representation 

1o "" c~-U4[aj  exp (A) -l- bj exp ( - -A)] ,  I~l--~ oo, 

~ D j ,  tcjl = t ,  arg(cj~-~/4) = 0 ,  ~ Ij, ] -  t ,  2, 3; 
(i.i8) 

bj+,j [b ] j '  ] = t, 2. (i. 19) 

We continue the Stokes lines into the domain X = o(i), where the asymptotic expansion 
(i.13) is valid. We chose the branches of the function 9(X) in the same way as for A(~), set 
(a, b) = cj(aj, bj), and require that arg(cjX -I/4) = 0, Xe ~j; then the asymptotic expansions 

(1.13) and (1.18) match. Equation (1.19) describes mode switching when the real x axis runs 
from one canonical domain into another, intersecting one of the Stokes lines. The transition 
matrix has a universal form, applying to any type of slightly nonuniform flow whose spectrum 
contains a branch point of the type in question. It follows from Eq. (i.19) that the mode 
amplitudes change by their principal order, so that mode switching effects cannot be ignored. 

2. A similar result can be obtained by expanding the amplitude of the disturbance F 
into a biorthogonal system of eigenfunctions of the locally uniform problem and using the 
formalism of [I] in the two-mode approximation. We write the linearized Navier-Stokes equa- 
tions for the amplitude of a disturbance with a fixed frequency and the particular solution 
of these equations in the form of a two-mode sum: 

(Ho(V, a~. z, ~, co) q- ~H~(g, a~, z, ~, ~)az)F = 0, NF(z, 0) = 0 ,  
(2.i) 

2 

F = Z cj (x) Aj (x, F) exp (&- IS j ) .  
j = t  

The eigenfunctions A] and the coefficients cj are the solutions of the equations 

(H o + io:jH~)Aj = O, NAj (x ,  0) = 0, 1Ai[ -,- 0, g ---,- co; 
2 

dco -- "K~ Wjp.c,~ exp [ie-* (S~ --  So) ], j = 1.2; 
d ~ - - ~  ~ 

h = l  

( 2 . 2 )  

/ aA~ \ 
\ ,  Bj, I.q - b - 7 /  

Wj~, = --  <B;, ~IA~> 
( 2 . 3 )  

Expanding A] , aj(x), and the operators H 0 and H l in the vicinity of the branch point 
x 0 and invoking the solvability conditions for the first and second approximations, in the 
limit X + 0 we have 

al,2 ---- ao - -  L ] / X -  ~ . . . .  A1,2 = A ~ + (al,~ - -  ao)A ~ + .... 

Hj_ ~ H10 "~- XHI1 + .... HO = HO0 + X[[01 + .... 

<B ~ H,oA~ = O, s = - t / - - i  < B ~ l t o i A  ~ >/< B ~ Hlo A~ 

Analogous expansions can be made for the solution B] of the conjugate problem. Subs- 
tituting them into Eq. (2.3), we find that the matrix elements have the universal form Wjk = 

(--l~+k-i/4X in the vicinity of the branch point. Solving the system (2.2), we readily show 
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that the asymptotic expansion of F in the limit X + 0 is analogous to Eq. (1.13). 
interior domain $ = O(i) 

= o x p  _ 

In the 

Denoting @1,2 = clexp(2iAg3/2/3) • c2exp(--2iA$3/2/3), we arrive at an equation for r 
that coincides with the equation for f0 (1.17). Consequently, both approaches give the same 
result for mode switching. 

3. As an example, we consider the boundary layer on a plate in a supersonic flow of an 

ideal gas. We adopt the displacement thickness 5" - ~ a s  the characteristic length 

scale. We define "fast" and "slow" longitudinal coordinates by the equations x I ~ R = ~*Ue/~e 

and x = gR. We make the parameter r equal to the reciprocal of the Reynolds number corres- 
ponding to the maximum growth rate of the unstable mode; then x = 1 approximately at the 
center of the instability zone. The eigenvalue problem (1.4) reduces to a Lees-Lin system 
(see, e.g. [i, 4]). The conditions at the wall stipulate that the velocity and temperature 
perturbations are equal to zero there. 

By virtue of self-similarity the profiles of the average flow depend only on the variable 
y to within O(e), so that the Reynolds number enters into the equations explicitly. This 
fact simplifies considerably the calculation of the eigenvalues ~ for complex-valued R, which 
is necessary in looking for branch points and plotting the Stokes lines. 

Figure 2 shows the real parts =r and the imaginary parts ei of the wave numbers as func- 
tions of the coordinate x for the first and second modes (curves 1 and 2). The calculations 
are carried out for the following parameters: Mach number 6; Prandtl number 0.72; adiabatic 
exponent 1.4; temperature factor Tw/Tav = 0.2; dimensionless frequency parameter f = ~*ve/U ~ = 

2.7722"10 -4 . Using a power-law dependence of the viscosity coefficient on the temperature with 
power exponent n = 0.75, we obtain the parameter s = 2.276"10 -4 The eigenvalues split in the 
interval 0.87 < x ! 1.15, imparting an instability to the first mode. The branch points x 0 are 

sought by the condition (1.9) and their values are X~ 'I)- ~ 0.853 - i2.21"i0 -2 and X (2) 
' 0 

1.143 - i5.04"i0 "3. The Stokes lines are represented by the dashed lines s emanating from the 

point x (1) and E= emanating from x (2) and they intersect the real axis at the points x (I) = 
0 0 ' 

0.869 and x(2) = 1.140, respectively. 

This information is sufficient for describing the evolution of modes with allowance for 
mode switching. Suppose, for example, that only a stable second mode is generated in the up- 

stream domain x < x! I) i.e. the amplitude coefficients in the expansion (1.3) have the val- 

ues a = h and b = 0. Using the transition matrix (1.19), we find that lal = Ibl = lhl for 

x > x , . Consequently, as the stable second mode passes through the neighborhood of the 

branch point x~ I)," it excites an unstable first mode of equal amplitude. The case in which 

only the first mode is present in the upstream domain is treated analogously. This mode 

passes through the branch point x (I), changing phase, and does not excite (in the principal 
0 

approximation with respect to g) the second mode. 

In closing, we note that the foregoing results can be used to extend the eN-method to 
classes of flows whose normal modes have a branching spectrum with several instability zones. 
This situation is typical of inviscid disturbances in hypersonic boundary layers [4-7] and 
in a thin shock layer [6, 8, 9]. In calculating the total magnification exponent N, it is 
necessary to switch from one unstable mode to another by the rules (1.19), having first 
computed the branch points and plotted the Stokes lines. 
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TURBULENT FLOW OF A GAS SUSPENSATE WHOSE PARTICLES 

INTERACT STRONGLY WITH THE CHANNEL WALLS 

Io V. Derevich UDC 532.529 

Turbulent two-phase gas flows are widely used in power engineering, aviation, and chemi- 
cal engineering. In the pneumatic transport of a powder, one frequently has fairly coarse 
particles, whose dynamic relaxation times may greatly exceed the characteristic time scale 
of the turbulent pulsations. In that case, the pulsating and average motion of the powder 
is substantially different from that for small particles, whose dynamic relaxation times are 
less than or comparable with the time scale of the velocity pulsations in the liquid phase. 
The extent of the pulsating motion for small particles is determined by the extent to which 
the powder is extrained in the turbulent motion and can be estimated in the local-equilibrium 
approximation without considering the collisions of the particles with the channel walls [i]. 
The average and pulsating characteristics for large particles are dependent on the interaction 
with the wails. There are effects from the marked velocity difference between the phases and 
the intense chaotic motion of the powder, where the level of the pulsating motion for the 
powder may greatly exceed that of the particle pulsation in an unbounded space with identical 
turbulence intensity, and this can be explained only on the basis of the collisions between 
inertial particles and the bounding surfaces. The collisions cause the particles to lose 
momentum and to rotate around the points of contact. The Magnus force arising from the rota- 
tion causes rapid transverse displacement [2, 3]. The channel walls in a gas--power system 
thus provide positive feedback, which causes additional pulsations in the powder by comparison 
with turbulent flow in an unbounded space. 

There are two approaches to calculating the characteristics of such flows. Firstly, 
there is direct stochastic simulation, which is based on solving the equations of motion for 
a single particle in a random velocity pattern [2, 5-8]. However, to obtain information on 
the averaged characteristics, it is necessary to calculate many thousands of such paths, 
which consumes considerable time. In spite of the apparent simplicity, the method of cal- 
culating Lagrange paths is not widely used in designing pneumatic transport systems. The 
second method is based on the conservation equations for mass, momentum, and angular momen- 
tum of the particles and the intensity of the turbulent pulsations [3, 9]. Then to close 
the system, it is necessary to derive expressions representing the rate of turbulent momentum 
transport, the angular momentum, and the pulsation energy, and also to substitute boundary 
conditions for the equations for the first and second moments, which incorporate the inter- 
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